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Pierre Gy’s sampling errors

The current emphasis on understanding the
variety and source of sampling errors has
arisen out of the pioneering work of Pierre Gy
who in 1951 wrote an unpublished paper in
French entitled ‘Minimum mass of a sample
needed to represent a mineral lot’. This was
the first in a series of publications translated
into English that established Gy as the leading
authority on issues of sampling broken ores,
although Brunton (1895) had earlier explored
some of the problems associated with this
activity. Gy (1973, 1979, 1982, 1992, 1995,
and 1998) identified the action of sampling as
an error-generating process consisting of
seven principal errors. The number of errors
has grown over time and now stands at ten, all
of which Gy identified and were implicit in his

analysis of the errors, although he had not
explicitly named them. The development and
progression of understanding these errors has
been highlighted by Pitard (1993). Contrary to
the popular belief that errors are self-compen-
sating, sampling variances are additive. The
simplest way of disaggregating the overall
sampling variance, is to separate it into the
component parts that arise at each stage of the
process. Listed below are the ten sources of
sampling error (Pitard, 2005) that contribute
to the non-representativeness of samples.
They include:

➤ In situ Nugget Effect (NE)
➤ Fundamental sampling error (FE)
➤ Grouping and segregation errors (GE)
➤ Long-range heterogeneity (quality)

fluctuation error (shifts and trends,
QE1)

➤ Long-range periodic heterogeneity
(quality) fluctuation error (cycles, QE2)

➤ Increment delimitation error (DE)
➤ Incremental extraction error (EE)
➤ Weighing error (WE)
➤ Preparation error (PE)
➤ Analytical error (AE).

The total sampling error (TE) can be split
into separate components, as shown by Gy
(1982) and Pitard (1989):
Random errors: reduced Bias: correct

but never eliminated sampling procedures

TE=[NE+FE+GSE+QE1+QE2] +
[DE+EE+WE+PE+AE]

The first five random errors can never be
completely eliminated, but they can be
minimized by careful design of the sampling
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Understanding the components of the fundamental sampling error

system. Eliminating the last four sampling errors is possible,
but if correct sampling practices are not diligently applied
they can also be the source of major biases. The ten errors
can be grouped into three categories, each of which identifies
the factors affecting them most:

➤ The material variation (short-range variation)
Errors 1, 2 and 3

➤ The sampling process (long-range and periodic
variations) Errors 4 and 5

➤ The tools and techniques (includes handling)
Errors 6, 7, 8, 9 and 10

Material Process Equipment and

variation variation analytical variations

TE = [NE+FE+GSE] +  [QE1+QE2] +  [DE+EE+WE+PE+AE]

Range of error: 50%–100% 10%–20% 0.1–4%

The focus of this paper is the Fundamental Error and the
three basic problems of sampling that surround this particular
error. These include:

➤ Problem No 1.–What error is introduced when a sample
of given weight, MS, is taken from a pile of broken ore?

➤ Problem No 2.–What weight of sample should be taken
from a pile of broken ore, so that the sampling error
will not exceed a specified variance?

➤ Problem No 3.–What degree of crushing or grinding is
required in order to achieve a specified value for the
error variance?

Components of the Fundamental Error (FE)

The Fundamental Error (FE) variance σFE
2 identified by Gy

(1982) is the ‘irreducible minimum’ of sampling errors, is the
only error that can be estimated before performing the
sampling (Petersen et al., 2002), and arises from the inherent
variability of the material being sampled. According to
François-Bongarçon (1998), FE is ‘the smallest achievable
residual average error’, a loss of precision inherent in the
sample due to physical and chemical composition as well as
particle size distribution. It arises because of two character-
istics of broken ore materials, namely the compositional
heterogeneity and the distributional heterogeneity. 

➤ Compositional heterogeneity—is a reflection of the
differences in the internal composition between
individual fragments of sampled ores, because of the
way they are constituted and composed. The greater
the difference in composition between individual
fragments, the greater the compositional heterogeneity
(Pitard, 1993). The terms compositional heterogeneity
and constitutional heterogeneity are used
interchangeably in the literature.

➤ Distributional heterogeneity—represents the difference
in average composition of the lot from one place to the
next in the lot; it is responsible for the irregular distri-
bution of grade and values in groups of fragments of
broken ore. The distributional heterogeneity can be
influenced by large differences in density and fragment
composition.

Eliminating the FE is not possible because ores are not of
uniform structure or composition throughout; everything is
heterogeneous, even if only at the molecular level
(Bongarçon, 1995). FE arises because of the compositional

and distributional heterogeneity, both factors acting to
prevent the sample being representative of the whole rock
pile. As indicated by Equation [1], FE is proportional to the
cube of the nominal particle size and inversely proportional to
the mass of the sample. Reduction of FE is therefore achieved
by decreasing the diameter of the largest particles or by
increasing the mass of the sample. We can, however,
calculate the variance associated with the FE and hence the
appropriate mass of the sample required; thus determination
of the mass required for a sample is an important consid-
eration. According to Gy (1982), if the mass of the pile of
broken ore (100s of kg) is very large compared to the sample
mass (a few kg), the variance of the fundamental error �2

FSE
may be expressed as 

[1]

If the complex looking term fgcl is made equal to K, it is
possible to simplify the equation and write it as:

Where:
MS Mass of sample measured in grams.
ML Is the mass of material from which Ms is taken,

measured in grams.
K Is a constant for any given ore and is the product of c,

f, g, and l. K = cfgl or K’ = cfg
dN

3 Nominal size of fragments in the sample raised to the
power of three

In all practical cases, MS is much, much smaller than ML,
and Equation [1] then takes the simplified form:

[2]

Let’s return to the term fgcl and examine these factors.

Components of K

f Shape factor 

f is a shape factor that relates the volume and the diameter of
the particles of broken ore to one another. f = 0.5 (approxi-
mately �/6) that transforms the cube of the fragment size d 3

N
into the fragment volume. 

▲
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The product VN = fd 3
N is the average volume of fragments

of nominal size dN (Bongarçon, 1998). The particle shape
factor f is an index varying between 0.1 (needles) and 1.0
(cubes), but rarely exceeds the range 0.3–0.5. In practice,
most values lie between 0.2 and 0.5, with the actual value
depending on the degree to which the sample has been
crushed or pulverized. For most ores a value of f = 0.5 is
used. In very fine gold ores, f = 0.2 and according to Pitard
(1993), it is the shape of the metal fragment responsible for
the sample variability that is most important, so that beyond
liberation it is the shape of the metal grains rather than the
gangue that matters.

g Granulometric factor
g is defined as the average fragment volume (V

–
) divided by

the nominal fragment volume (vN) in the ratio g = V–/VN
which is dependent on the reject percentage x used to define
dN. When the average fragment volume v is multiplied by g it
becomes the average all-size fragment volume in the lot to be
sampled. The particle size range factor g is also known as the
grain size distribution factor (or the size range factor) and
takes values between 0 and 1; low values of g denote a large
range of particle sizes and high values denote a small range
(g = 1 denotes all particles are of identical size). 

When rock is crushed the product is a full distribution of
fragment sizes, which makes a single numerical size
parameter that characterizes the whole fragment size distri-
bution dN somewhat unrealistic. Gy examined the behaviour
of the factor g as a function of the reject percentage (x) for
114 combinations of crushing equipment and materials. Six
of these experimental curves are plotted in Figure 1.

The values for the reject percentage close to 5% have
minimal variability around a value of g that is reasonably
close to 0.25 for most ores and can be estimated from the
ratio of the nominal top size d to the lower size limit d’
(about 5% undersize) as follows:

➤ Large size range (d/d’ > 4) g = 0.25
(no crushing)

➤ Medium size range (2 ≤ d/d’ ≤ 4) g = 0.50
➤ Small size range (d/d’ < 2) g = 0.75
➤ Uniform size (pulverized) (d/d’ = 1) g = 1.00

This approach to establishing a value for g the granu-
lometry factor has been investigated in different ways by a
number of researches, but consistently achieves values of
about 0.25. According to François-Bongarçon (1998) away
from the 5% reject nominal size the formula for the FE:

i. is unusable;
ii. the effect of sizing on sample precision cannot be

objectively assessed, and;
iii. comparing procedures across comminution devices or

types of material becomes a futile exercise.
The 5% reject size (P95, for 95% passing) has with time

become the industry standard for fragment sizing. The
lognormal fragment size simulation for the usual range of
fragment sizes is shown in Figure 2.

c Mineralogical composition factor
c is a factor for a material consisting of two components,
approximately equal to the ratio of metal density (�) to the
dimensionless grade of the lot (‘a’ in ‘per unit’). In its
simplest form the factor has the form:

For gold ores of very low grade where a<<1 it is possible
to use the approximation that c ≈ �m/t, where t = gold grade
(g/t = g/1000000g). Because a grade of 1 ppm gold is the
same as 1g/t, which is equivalent to1 gram in 106 grams, the
mineralogical composition factor c for a gold grade of 1 g/t
and a gold density of 19.3 g/cm3 is:

c may seem very large, but despite the units it is not a
density but, in rough terms the product of a density and a
large relative variance. Generally the mineralogical
composition factor is given by:
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Figure 1. Gy’s experimental grain size versus sieve size rejects (x).
Source: François-Bongarçon, D. 1995. Course notes from a course
entitled ‘Sampling in the mining industry: Theory and Practice’

Figure 2. Comparison of fragment size and sieve size. Source: François-
Bongarçon, D. 1995. Course notes from a course entitled ‘Sampling in
the mining industry: Theory and Practice’

Experimental material

Lognormal fragment size simulation
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where:
ρm = density of the metal (valuable constituent) of interest

(g/cm-3).
ρg = density of the gangue (g/cm3).

a The decimal proportion or fractional concentration
of the metal of interest

a is a factor that captures the influence of the relative
proportions of the metals of interest on the mineralogical
composition factor, and is calculated in the following way:

➤ Zinc giving an assay of 5% and occurring as sphalerite
(ZnS) would have a decimal proportion of sphalerite of:

➤ Copper giving an assay of 0.35% and occurring as
chalcopyrite would have a decimal proportion of
chalcopyrite of: 

This also means through this factor the sample variance
depends on the grade of the lot being sampled, and that any
use of the formula or any sampling nomogram derived from
it, makes sense only when the grade level at which it is
established is duly stated (François-Bongarçon, 1993 and
1995, p. 477; Pitard, 1993).

Thus at 1 ppm 

and the mineralogical factor is calculated as follows:

At 100 ppm c = 19.3 � 104 g/cc and at 1 000 ppm, c =
19.3 x 103 g/cc. More often than not the approximation that c
≈ ρm/t can be used for low concentration ores. In fact the
value of c for gold is generally lower because most of the gold
occurs as a gold-silver amalgam that according to Pitard
(2006, personal communication) has a density of around 16
g/cc in which case c = 16 000 000.

In the general case the density of the crushed ore varies
with the degree of comminution and is a function of the
proportions of metal and gangue. So the product cl is not a
variance multiplied by a density, but is rather a density-
weighted variance in which each fragment’s contribution to
the total variance is weighted by its density (François-
Bongarçon, 1995; Pitard, 1993).

l Liberation factor
l is a dimensionless number between 0 (no liberation) and 1
(complete liberation), which varies with the size of the
fragments and also depends on the nominal size of the fully
liberated metal grains. It also depends on the geostatistical
characteristics of the mineralization at microscopic scale, i.e.
spatial correlations within the fragments. The liberation size
d is the nominal size at which the fragments of the lot must
be crushed so that the mineral grains become fully liberated
from the gangue and at the liberation size (as well as below)
the liberation factor is equal to one. This is an ideal concept
and for practical purposes, it is the size at which approxi-
mately 85 per cent of the large fragments have been liberated.
The use of the value 0.5 for the exponent in this equation has
been the subject of some considerable discussion. According
to François-Bongarçon (1998, 1999), and François-
Bongarçon and Gy (2002), Gy’s empirical liberation factor for

unliberated particles l = √dN
dl

also written as l = (dN
dl)0.5

does not

give a good result and he has suggested a more general form
for the liberation factor provides a better result as given here:

[3]

By contrast, Pitard (1993) fully supports Gy’s use of the
0.5 as the exponent in Equation [3] saying that it depends on
how it is used and what the state of the broken ore is.

b
Is a value related to the slope of the calibration line above the
liberation size dl. The value for b can vary between 0 and 3
depending on the nature of the ore and requires calibration to
a particular ore type (de Castilho et al. 2005). Exponent b in
Equation [3] takes values close to 1.5 in most gold ores as
well as in cases where it has not been possible to calibrate the
exponent and so we can write:

Using a liberation factor b = 1.5 it is possible to produce
sampling nomograms that are realistic, correct and useful.

dN

Nominal size of fragments in the sample, is equivalent to the
maximum particle size in the lot to be sampled. In practice, dN
is taken to be the screen size that retains 5% of the lot being
sampled. For example, if a sample is sieved using a 2.5 cm
aperture screen and 5% of the sample is retained on top of
the sieve then dN = 2.50 cm. Note: In RSA sieves are referred
to only by their aperture and although the old mesh notation
is no longer used, it nevertheless appears on the screen name
plate.

dl liberation size and liberation factor
There is a change in the form of the relative variance of the
FE when the ores become fully liberated (see Figure 3.)

Beyond liberation size further comminution does not
change the variability of the individual rock fragments
(François-Bongarçon 1998). From the log-log graph of l(dl) x

▲
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d3 versus fragment size (shown in Figure 3) it is known that
the slope of the line below the liberation size (dl) is equal to
3. Beyond the liberation size the slope of the line is less than
3 and is given by � = 3–b and the effective range for b is
actually 1 to 2. According to François-Bongarçon (2004):

where b is a factor related to the slope of the line and varies
between 0 and 3. The underlying insight to this factor is
shown in Figure 4.

Applications of Gy’s equation to the problems of
sampling
Having derived all the components of Gy’s equation it is now
possible to answer the questions that were posed earlier. For
the sake of this exercise assume the following sampling

conditions for a gold bearing ore crushed to about 0.93 cm,
with c = 16 000 000 for a gold-silver amalgam, f = 0.5, g =
0.25 and l = 0.000035. 

➤ Problem No. 1—What error is introduced when a
sample of given weight, MS, is taken from a pile of
broken ore? This problem is simply answered by
substituting the known factors into the original Gy’s
equation. Assume that dN = 1.25 cm.
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Figure 3. Comparison of linear fragment size with relative variance x mass. Source: François-Bongarçon, D. 1995. Course notes from a course entitled
‘Sampling in the mining industry: Theory and Practice’

Figure 4. Fitting a general case to fragment sizes above and below the liberation size (0.01); Above the liberation size slope a = 3–b; below the liberation
size slope a = 3. Source: François-Bongarçon, D. 1995. Course notes from a course entitled ‘Sampling in the mining industry: Theory and Practice’

Genetic particle model
Log-log scale

Linear size of fragments
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A precision of 29.58% must be compatible with the data
quality objectives of the sampling protocol for this value to be
expected. 

➤ Problem No. 2—What weight of sample should be
taken from a pile of broken ore, so that the sampling
error will not exceed a specified precision σFE, let us
say 15%? This requires a simple rearrangement of Gy’s
equation in the form:

and the substitution of the appropriate factors to give:

A sample mass of approximately 16 kg is required to
achieve a precision of 15% for this ore type.

➤ Problem No. 3—What degree of crushing or grinding is
required in order to achieve a specified value for the
error variance σR

2? Again this requires rearrangement of
Gy’s equation as follows:

Assume here that the precision is 15%, equivalent to an
error variance is 0.0225, and that the mass of material to be
collected is 15 kg.

The fragment size should be 95% passing 0.9 cm to
achieve a precision of 15% if a sample of 15 kg is collected.

Conclusions

Although the Fundamental Error is only one of ten sampling
errors that the practitioners needs to take cognisance of, the
approach taken by Pierre Gy provides an excellent inferential
relationship between the mass of material to be sampled, the
size of the fragments being sampled and the relative variance
of the sampling error. It also provides solutions for three of
the main problems associated with the Theory of Sampling.
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Appendix 1

Below the liberation size dl

Gy’s formula can be written:

where K’ = c * f * g because below the liberation size l = 1 for
all sizes.

▲
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Above the liberation size dl

For the sake of this exercise assume the following sampling
conditions for 10 kg of gold-bearing ore crushed to about
0.93 cm. With c equal to 19 300 000, f equal to 0.5, g equal
to 0.25 and l equal to 0.000035, the precision of the FE is:

In order to keep the precision below 15% either the mass
of the sampled material must be increased or the nominal
fragment size must be reduced to say 0.93 cm. 

Gy’s formula takes the form                                   where

� = 3–b. Since we know              we can substitute for l in

Gy’s equation and further write:

dl is liberation size for mineral particles, i.e. the maximum
particle diameter which ensures complete liberation of the

mineral. dl is measured in cm. Provided you have the
liberation factor you can rearrange the equation

l = (dN

dl )b in its most simple form to give us dl as

follows:

In a more complex format we can derive the liberation
size as follows:

An alternative arrangement of the equation for the
liberation size is as follows:

The general case for Gy’s formula can be written as 

[4]

where:
� = a parameter for specific deposits which can be ‘calibrated’
to a particular ore type. Current research has indicated that �
= 1.5 for most low grade gold ores (see1). Equation [4] can
be rearranged so that 

[5]

We now have all the tools necessary to answer the three
questions stated at the beginning of the appendix.
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ERRATUMERRATUM

Please note on pages 137 and 138 of the February Journal 2007, in the Comments:
Mining method selection by multiple criteria decision making tool

and
EQS: a computer software using fuzzy logic for equipment selection in mining engineering

By: M. Yavuz and S. Pillay
The author’s name should read S. Alpay and not S. Pillay




